Electronics (ELEC)

Electronics (ELEC) Courses

ELEC 2501 [0.5 credit]

Circuits and Signals

Properties of signals. Basic circuit elements: voltage and current sources. Kirchhoff's laws, linearity, superposition. Thevenin and Norton's theorems. Circuit simplification. AC steady-state analysis: impedance, admittance, phasors, frequency response. Transient response of RL and RC circuits: form of response, initial and final conditions. RLC circuits: resonance.

Includes: Experiential Learning Activity Precludes additional credit for ELEC 3605.

Prerequisite(s): MATH 1005 (may be taken concurrently) and (PHYS 1004 or PHYS 1002), and second-year status in Engineering.

Lectures three hours a week, laboratory and problem analysis three hours a week.

ELEC 2507 [0.5 credit] Electronics I

Qualitative semiconductor physics, leading to the diode equation. Diode applications. Operational amplifiers and their application in feedback configurations including active filters. Introduction to bipolar transistors and MOSFETs. analysis of biasing circuits. Transistor applications including small signal amplifiers.

Includes: Experiential Learning Activity

Precludes additional credit for OSS 2006, PLT 2006 (no longer offered).

Prerequisite(s): MATH 1005, ELEC 2501, and secondyear status in Engineering.

Lectures three hours a week, laboratory and problem analysis three hours a week.

ELEC 2602 [0.5 credit]

Electric Machines and Power

Modeling and analysis of basic electric power systems. Single-phase and three-phase circuits: real and reactive power, per-phase analysis, power factor correction. Electro-mechanical energy conversion: operation, characteristics and analysis of transformers, DC-, induction-, and synchronous electric machines. Motor and generator operation.

Includes: Experiential Learning Activity

Prerequisite(s): PHYS 1004 and ELEC 2501, and second-

year status in Engineering.

Lectures 3 hours per week. Laboratory and problem analysis 3 hours per week alternate weeks.

ELEC 2607 [0.5 credit] Switching Circuits

Boolean algebra, gate, combinatorial circuits. DeMorgan notation, sum-of-product and product-of-sum forms. Logic arrays, PLAs and PALs. Flip-flops, latches, sequential circuits, state graphs and state minimization. Counters and controllers. Hazards. Asynchronous sequential circuits, race free assignment, realization.

Includes: Experiential Learning Activity Precludes additional credit for SYSC 2310.

Prerequisite(s): PHYS 1004 or PHYS 1002 and second-

vear status in Engineering.

Lectures three hours a week, laboratory three hours alternate weeks.

ELEC 3105 [0.5 credit] Electromagnetic Fields

Vector calculus: gradient, divergence, curl, integration of vector fields. Electrostatics, magnetostatics. Boundary conditions. Poisson's and Laplace's equations: method of images, separation of variables, iterative method, Electric and magnetic properties of matter. Magnetic circuits. Lorentz force. Motional emf, electromagnetic induction. Maxwell's equations.

Includes: Experiential Learning Activity Prerequisite(s): MATH 1005, MATH 2004, and (PHYS 1004 or PHYS 1002), and second-year status in Engineering.

Lectures three hours a week, laboratory and problem analysis three hours alternate weeks.

ELEC 3500 [0.5 credit]

Digital Electronics

Digital circuit design using verilog and logic synthesis, the electronic properties of logic gates, electrical interfacing between logic families, asynchronous to synchronous interfacing, clock distribution and timing, VLSI design options. Students implement substantial circuits with fieldprogrammable gate arrays.

Includes: Experiential Learning Activity Prerequisite(s): ELEC 2507 and ELEC 2607. Lectures three hours a week, laboratory three hours a

ELEC 3508 [0.5 credit]

Power Electronics

Power semiconductor devices: Thyristor, GTO, IGBT, SiC, GaN. Converter circuits: controlled AC to DC rectifiers, choppers, DC to AC inverters, AC voltage controllers. Protection of conversion circuits. Applications to high-efficiency control of electric machines and electromechanical energy conversion devices. Includes: Experiential Learning Activity

Prerequisite(s): ELEC 2507 and ELEC 2602. Lectures three hours per week, laboratories/problem analysis three hours per week.

ELEC 3509 [0.5 credit]

Electronics II

Introduction to semiconductor devices and ICs. DC, AC and switching properties of BJTs. Linear amplifiers; bandwidth considerations; two-port analysis. Large signal amplifiers; power amplifiers; transformerless circuits. Feedback and operational amplifiers; gain, sensitivity, distortion and stability. Filter design. Oscillators.

Includes: Experiential Learning Activity

Precludes additional credit for: ELEC 3509 may not be taken for credit by students in the Biomedical and Electrical Engineering or Biomedical and Mechanical Engineering programs.

Prerequisite(s): ELEC 2507.

Lectures three hours a week, laboratory three hours a

ELEC 3602 [0.5 credit] Electrical Power Systems

The electric power system. Components: power transformers and connections, transmission lines. Analysis: balanced and unbalanced three-phase systems, symmetrical components, load flow, FACTS. Operation: frequency and voltage control, steady state and transient stability, fault protection. Distribution systems: utility, residential, commercial. Electrical safety: code, grounding/bonding.

Also listed as ELEC 4602. Prerequisite(s): ELEC 2602.

Lectures three hours a week, problem analysis two hours a week.

ELEC 3605 [0.5 credit] Electrical Engineering

a week.

DC circuits: elements, sources, analysis. Single phase AC circuits: phasors, RLC circuits, real and reactive power, impedance, network analysis, three phase systems. Power transformers. DC motors: operation and characteristics. AC motors: single phase and three phase. Precludes additional credit for ELEC 2501. Prerequisite(s): MATH 1005 and (PHYS 1004 or PHYS 1002), and second-year status in Engineering. Lectures three hours a week, problem analysis 1.5 hours

ELEC 3907 [0.5 credit] Engineering Project

Student teams work on open-ended projects based on previously acquired knowledge. Lectures are devoted to discussing project-related issues and student presentations. A project proposal, a series of project reports, and oral presentations, and a comprehensive final report are required.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 2507, ELEC 2607, third year status in Engineering, and enrolment in the Electrical Engineering or Engineering Physics program.

Lecture two hours per week, laboratory six hours per week.

ELEC 3908 [0.5 credit] Physical Electronics

Fundamentals of device physics and operation of the pn junction, bipolar transistor and MOSFET. Basic integrated circuit processing and application to diodes, BJTs and MOSFETs. Correlation between processing, structure, operation and modeling. Consideration of parasitic and small-geometry effects, reliability and process variation. Includes: Experiential Learning Activity

Precludes additional credit for ELEC 4705.

Prerequisite(s): ELEC 2507.

Lectures three hours a week, laboratory and problem analysis three hours alternate weeks.

ELEC 3909 [0.5 credit] Electromagnetic Waves

Maxwell's equations and EM wave solutions. Polarization. Poynting vector. EM waves in dielectrics and conductors; skin depth. Reflection and refraction. Standing waves. Fresnel relations, Brewster angle. Transmission lines. Line termination, basic impedance matching and transformation. Smith charts. Introduction to guided waves; slab waveguide.

Includes: Experiential Learning Activity
Precludes additional credit for PHYS 3308.
Prerequisite(s): ELEC 3105 or permission of the
Department.

Lectures three hours a week, problem analysis three hours alternate weeks.

ELEC 3999 [0.0 credit] Co-operative Work Term

Includes: Experiential Learning Activity

ELEC 4502 [0.5 credit]

Microwave Circuits

Introduction to microwave semiconductor devices, microwave passive components, microwave integrated circuit technology, and microwave circuit measurements. Basic network theory and scattering matrix description of circuits. Design of matching networks, filters, amplifiers and oscillators at microwave frequencies.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 4503; may be taken concurrently. Lectures three hours a week, laboratory three hours alternate weeks.

ELEC 4503 [0.5 credit]

Radio Frequency Lines and Antennas

Introduction to distributed circuits, travelling and standing waves, reflection coefficient, SWR, impedance transformation, Smith charts. Introduction to transmission lines; coaxial, rectangular waveguide, resonators, optical fibers. Introduction to antennas; gain, directivity, effective area. Introduction to linear arrays.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 3909.

Lectures three hours a week, laboratory three hours

alternate weeks.

ELEC 4504 [0.5 credit]

Avionics Systems

Electromagnetic spectrum. Air data sensing, display. Communications systems. Navigation and landing systems; ground-based, inertial and satellite systems. Airborne radar. Guidance, control for aircraft, autopilots; stability augmentation; active control; sensor requirements; display techniques. Aircraft power systems. Safety systems. Vehicle/systems integration, certification. Precludes additional credit for AERO 4504. Prerequisite(s): fourth-year status in Engineering. Not open to students in Electrical Engineering, Computer Systems Engineering, Engineering Physics or Communications Engineering.

Lecture three hours a week.

ELEC 4505 [0.5 credit] Telecommunication Circuits

A course of study of the commonly used circuit components in modern telecommunication systems. Both analog and digital systems are included. The design of the hardware is emphasized. Examples are drawn from broadcasting, telephony and satellite systems. Includes: Experiential Learning Activity

Prerequisite(s): ELEC 3509 and (SYSC 3501 or SYSC 3503)

SYSC 3503).

Lectures three hours a week, laboratory three hours alternate weeks.

ELEC 4506 [0.5 credit]

Computer-Aided Design of Circuits and Systems

Basic principles of Computer-Aided Design tools used for analysis and design of communication circuits and systems. Frequency and time-domain analysis. Noise and distortion analysis. Transmission line effects. Sensitivity analysis and circuit performance optimization. Digital simulation.

Includes: Experiential Learning Activity
Prerequisite(s): fourth-year status in Engineering.
Lectures three hours a week, laboratory three hours
alternate weeks.

ELEC 4509 [0.5 credit] Communication Links

Thermal noise, intermodulation, 1dB compression, dynamic-range, SNR, noise-figure, noise temperature, antenna gain, EIRP, G/T. Wireless: Earth's bulge, Fresnel clearance, path-loss, rainfall, receiver threshold, multipath, diversity. Fiber: loss, dispersion, lasers, PIN detectors. Satellite: GEO, link calculations, FDMA, TDMA, satellite tracking, spherical trigonometry, antenna pointing, LEO. Prerequisite(s): fourth-year status in Engineering or permission of the Department.

Lectures three hours a week, problem analysis three hours alternate weeks.

ELEC 4600 [0.5 credit] Radar and Navigation

Surveillance radar: radar equation, minimum detectable signal, pulse integration, cross-section fluctuations, PRF, range ambiguities, staggered PRF. MTI radars: coherent operation, delay Line cancellers, FFT. Radio navigation: lines of position, NDB, VOR, DME, ILS. GPS: orbits, pseudo-ranges, position determination, GDOP, ionosphere. Geoide, coordinate frames.

Prerequisite(s): fourth-year status in Engineering or permission of the Department.

Lectures three hours a week, problem analysis 3 hours alternate weeks.

ELEC 4601 [0.5 credit]

Microprocessor Systems

Interfacing aspects in microprocessor systems. Microprocessors and bus structures, internal architecture, instruction set and pin functions. Memory interfacing, input-output, interrupts, direct memory accesses, special processors and multiprocessor systems.

Includes: Experiential Learning Activity

Precludes additional credit for COMP 3006 (no longer offered), SYSC 3320, SYSC 3601.

Prerequisite(s): ELEC 2607 and one of SYSC 2003 or SYSC 3003 (no longer offered) or SYSC 3006 or permission of the Department.

Lectures three hours a week, laboratory three hours alternate weeks.

ELEC 4602 [0.5 credit] Electrical Power Systems

The electric power system. Components: power transformers and connections, transmission lines. Analysis: balanced and unbalanced three-phase systems, symmetrical components, load flow, FACTS. Operation: frequency and voltage control, steady state and transient stability, fault protection. Distribution systems: utility, residential, commercial. Electrical safety: code, grounding/bonding.

Also listed as ELEC 3602. Prerequisite(s): ELEC 2602.

Lectures three hours a week, problem analysis two hours a week.

ELEC 4609 [0.5 credit]

Integrated Circuit Design and Fabrication

Introduction to nMOS IC design: static logic gates, noise margin, transmission gates, factors influencing switching speed, dynamic logic, input protection, output buffers, circuit simulation with SPICE. Laboratory work includes design and layout of a simple nMOS IC that is fabricated and returned for testing.

Includes: Experiential Learning Activity
Prerequisite(s): ELEC 3500 or ELEC 3908.
Lectures three hours a week, laboratory and problem analysis three hours alternate weeks.

ELEC 4700 [0.5 credit]

The Physics and Modeling of Advanced Devices and Technologies

Fabrication, operation and modeling of advanced devices for information technology. Topics: physics of materials, quantum mechanics of solids, optical transitions, physical analysis and models for state-of-the-art electronic/optical technologies and materials. Technologies: MOS and III-V based transistors, solid-state optical devices, MEMS and nano-technology based devices.

Prerequisite(s): ELEC 3908.

Lectures three hours a week, problem analysis two hours alternate weeks.

ELEC 4702 [0.5 credit] Fiber Optic Communications

Fundamentals of optoelectronics with application to fiber optic communications. Optical fibre: modes, losses, dispersion, splices, coupling to sources. Optical sources: LEDs, laser diodes. Optical detectors: photoconductor, pin and avalanche photodiodes. Optical receiver design. Fiber optic communications systems: intensity modulation/direct detection; coherent homodyne or heterodyne detection.

Includes: Experiential Learning Activity
Prerequisite(s): ELEC 3908 and ELEC 3909.
Lectures three hours a week, laboratory three hours alternate weeks.

ELEC 4703 [0.5 credit]

Solar Cells

Semiconductor band structure, photogeneration, the solar spectrum. Detailed analysis of monocrystalline silicon solar cells. Solar cells based on thin film materials: amorphous silicon, III-V materials, organics, titania-dye cells. Cells for concentrator systems. Photovoltaic power systems. Solar cells for building envelopes.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 2501 and ELEC 2507 and fourthyear status in Sustainable and Renewable Energy Engineering, or ELEC 2501 and ELEC 2507 and fourthyear status in Engineering with permission of the instructor.

Lectures three hours per week, laboratories/problem analysis three hours alternate weeks.

ELEC 4704 [0.5 credit]

Nanoscale Technology and Devices

Engineering at the nanoscale. Quantum confinement and the effect of scale. Analysis tools: microscopy, spectroscopy. Fabrication: thin films, nanoparticles, nanotubes, graphene, organics. Structures and properties: quantum wells, nanocrystals, nanostructuring. Applications and devices: electronics, optoelectronics, photonics. Includes: Experiential Learning Activity
Prerequisite(s): ELEC 3908, ELEC 3909.
Lectures three hours a week, problem analysis 1.5 hours a week.

ELEC 4705 [0.5 credit]

Electronic Materials, Devices and Transmission Media

Review of fundamental quantum mechanics, tunneling, quantization, solid-state theory, conductors, semiconductors, superconductors, insulators, and optical properties. Devices used in modern high speed electronic and communication systems: transistors, lasers, photodiodes, fiber optics, Josephson junctions. Nanotechnology and quantum applications.

Prerequisite(s): ELEC 3908. Lectures three hours a week.

ELEC 4706 [0.5 credit]

High-Speed Electronics: Circuits and Systems

Challenges faced in designing high-speed electronic circuits and systems. Fundamentals of high-speed Tx/Rx architectures including: timing and HDL, PLL/DLL, Tx drivers, interface to photonic components, channel modelling, Rx channel, choice of modulation, equalization, clock and data recovery. VHDL hardware and CAD software laboratories.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 3500.

Lectures three hours a week, laboratory three hours a week.

ELEC 4707 [0.5 credit]

Analog Integrated Electronics

Emphasis on integration of analog signal processing techniques in monolithic IC technology. Continuous active filter design. MOS IC technology. OP amp design. Basic sampled data concepts; Z-transform analysis, switched capacitor filters. Noise aspects. Bipolar technology: radio frequency IC design.

Includes: Experiential Learning Activity

Prerequisite(s): ELEC 3509.

Lectures three hours a week, laboratory and problem

analysis three hours alternate weeks.

ELEC 4708 [0.5 credit]

Advanced Digital Integrated Circuit Design

Advanced Verilog, test benches. VLSI design based on CMOS technology, characteristics of CMOS logic circuits, cell libraries, building blocks, structured design, testing, Computer-Aided Design tools. Laboratory emphasis on design synthesis from Verilog.

Includes: Experiential Learning Activity

Prerequisite(s): fourth-year status in Engineering and ELEC 3500 or permission of the Department.

Lectures three hours a week, laboratory and problem

analysis three hours alternate weeks.

ELEC 4709 [0.5 credit] Integrated Sensors

Overview of sensor technologies with emphasis on devices suitable for integration with silicon integrated circuits. Sensor design and fabrication principles including

signal conditioning; discussion of automotive, biomedical, and other instrumentation applications.

Includes: Experiential Learning Activity

Prerequisite(s): fourth-year status in Engineering.
Lectures three hours a week, laboratory and problem

analysis three hours alternate weeks.

ELEC 4906 [0.5 credit] Special Topics

At the discretion of the Engineering Faculty Board, a course dealing with selected advanced topics of interest to students in Biomedical and Electrical, Communications, Computer Systems, Electrical and Software Engineering and Engineering Physics may be offered.

Includes: Experiential Learning Activity

Prerequisite(s): fourth-year status in Engineering. Lectures three hours a week, laboratory and problem analysis three hours alternate weeks.

ELEC 4907 [1.0 credit] Engineering Project

Student teams develop professional-level experience by applying, honing, integrating, and extending previously acquired knowledge in a major design project. Lectures are devoted to discussing project-related issues and student presentations. A project proposal, interim report, oral presentations, and a comprehensive final report are required.

Includes: Experiential Learning Activity

Prerequisite(s): (ELEC 3907 or SYSC 3010) and fourth-

year status in Engineering.

ELEC 4908 [1.0 credit] Engineering Physics Project

Student teams develop professional-level experience by applying, honing, integrating, and extending previously acquired knowledge in a major design project approved for Engineering Physics. Lectures devoted to discussing project-related issues and student presentations. A project proposal, interim report, oral presentations, and comprehensive final report are required.

Includes: Experiential Learning Activity

Prerequisite(s): Fourth-year status in Engineering. Certain projects may have additional prerequisites or corequisites.